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INTRODUCTION

The purposes of this research were (a) to investigate the information
derivable, in principle, from observed intensities of scattered x rays,
(b). to investigate properties of atomic electron-electron radial
distribution functions, and (c) to determine the geometry of the xenon
hexafluoride molecule by use of electron diffraction,

Even though scattering of high energy x rays was discussed
perceptively by Debye (1) in 1915, it was not until the advent of quantum
mechanics that extensive theofetical and experimental studies were under—
teken. In the late 1920's, Waller and Hartree (2) developed theoretical
expressions for intensities observed in x-ray diffraction experiments
based on the then recent assumptions of quantum mechanics, and Barrett
(3), Herzog (4), and Wollan (5) performed experimental studies of noble=
gas afoms.

In the Waller-Hartree development, emphasis was pladed on the
‘relationship of observed intensity to the density of electrons about
the nucleus. As a consequence of this emphasis, early expeérimental work
centered on determination of one-electron radial densities from observed

total intensities (6, 7, 8).

The Waller-Hartree expressions were derived assuming a specific form
for the atomic wavefunction. It is possible, however, to deduce expres-

. 8ions quite different from the Waller—-Hartree expressions by dssuming a

general form for the wavefunction and modifying the method o; integration.
If this alternative procedure is used, it becomes apparent that the total
observed inténsity is directly related to a two~electron density funétion

and only indirectly related to the density of electrons about the nucleus.



Some properties of these‘two-electron'radial distribution functions are
studied in the present investigation and electron-electron radial
distributions are deduced from observed total intensities of x rays.

Xenon hexafluoride was first prepared in 1962 by a number of workers
(9, 10, 11, 12). 1Its preparation followed the discovery of the lower
fluorides of xenon, X9F4 (13) and Xer (14, 15, 16, 17, 18). Sigge the
discovery of the xenon fluorides, analyses'hgye definitively established
the structure of XeF, as linear (19, 20) and xeF4 as'square planér (21,
22, 23, 24). Attempts to establish the structure of Xer, however, have
not been conclusive (25, 26). In addition, a number of theoretical
treatments have resulted in conflicting predictions about the molecular
geometry (27, 28, 29, 30).

_An electron diffraction study was undertaken to determine if the
molecule possessed octahedral symmetry as suggésted by several authors
(28, 29, 30). The results of this study show that the symmetry is not
0, and suggest a slightly distorted octahedral model containing Xe-F

h
bonds of differing length.



CORRELATION EFFECTS ON X~-RAY DIFFRACTION INTENSITIES
Theoretical Expréssions

Theoretical expressions for the intensity of x rays scattered by gas
atoms were developed by Waller and Hartree (2). Impqrtant contributions
to the theory had been made previously by Wentzel (31) and Klein'(32).
Simplification and evaluation of the expressions for certain atoms have
been made by other authors (33, 34, 35).

A first order perturbation approximation was used by Waller and
Hartree to describe the nonrelativistic N-electron problem. The frequency
of the incident radiation was assumed to be large compared to the K
absorption frequency of the atom and the distance from scattering center
to the point of observation was assumed large compared to atomic distancga,
In addition, recoil effects in inelastic events were neglected.

The resulting expressions for the total intensity Itotod) and the
intensity Ielasod) elastically scattered by independent atoms initially

in state k, are

Itot(;d) » Iol f‘f’; I:ZL; e;cp(i;.;i)l 2 \.’k dy | (1)
and
.8 =1, /Y %exp(i-s'.;i) ¥, av]? (2)

where § is the total angle of scattering (twice the Bragg angle), I, is
the intensity scattered by a point electron as derived from classiocal

theory (36), ‘& is the electronic wavefunction of the atom,';; describes



4

the position of the ith atomic electron, and 8 is a vector of magnitude
(an/2) (sin g/2) and direction Go - n), where ;o and 1 are unit vectors
in the incident and scattered directions, respectively.

For spherically symmetric atoms or an average over random orienta=

tions of aspherical atﬁms, Equation 2 reduces to

Ielas

@ =1, |FG6)| 2. o (3)
The atomic scattering factor F(s) is given by

F(s) =/, .(r) (sin sr)/sr dr (4)
where

o) = Z/YY o far, | (5)

Elastically scattered intemnsity is, then, a ome-electron property which
depends on the radial distribution D(r) of electrons about nuclei.
Simplification. of Eéuation 1 may be accomplished by at least two
different procedures. In the procedure adopted by Waller and Hartree (2),
it is assumed that ‘Pk can be described by an antisymmetric combination

of products of one-electron orbitals of the form

\Pk - A(“i(l)uz(z) ¢ o uN(N)) (6)



where
Sug(ugle) v = 8 (7)

and A is the antisymmetrization operator. If Equation 1 is rearranged to

the expression

I @ =1 /Y, %?exp(i?.;i)exp(-i?.;:l) ¥ ar, (8)
integration over all volume elements except dvi and dvj yields

It = Il PE-ZJZ (11139) - (13138) + ¥ ] . ()

where the prime denotes summation over all terms except for i=j and

(kllmn) =/ w (1) (3) exp(iE.(Fy=F ) uy (1)uy(9) avyav,. (20)
Funotions of the form (kllmn) may be expressed as products fklf;n’ with

£, =/ u (1) exp(13.T,;) u, (i) dv,,

8o that Equation 8 has the form

Itot-],:cldifiil "ifufn'ijfij £ *¥ 1. (11)

The first term in Equation 11 is the elastic intensity defined by



Equation 3. The remaining terms are referred to as the inelastic

intensity terms S(s), where

SES e st (12)

S(s8) = N=- X f .
i ij ij 3

Tt
ii "ii
The resulting formula for the total intensity is, then,

I, . " Icl[IF(s)lz +5(s) 1. SRS - (18)
Equation 13 is the expression presented by Waller and Hartree (2) and
that given in most standard reference books on the aoattefing of high
energy x rays by gas atoms (37, 38).

An alternative procedure for integration of Equation 1 is possible
and the resulting expression demonstrates an interesting propérty of itot
which is not apparent in the above formulation. The first step is to

recast Equation 1 into the form

* ——
Lot ™ To1 ? ?/‘l’k exp(ls.rid), ¥, ar (14)

in which ¥, 5 = (?i -T J). In this form it is evident that I . is a

two=electron property related to the operator exp (i-s-.?i :j)° The N-electron
wavefunction depends on 3N spatial coordinates which may be conveniently
taken as the componenté of the set ’;1,' ;2. o o o .;i' ;ij’ ?k, o o oy ?N
rather than the components of the set ?1, ?2, o« o o3 ;i’ ;;j' ;k' o o o ;N'

For spherically symmetric systems, integration ovsr all coordinates

except r, . simplifies Equation 14 to

i3



S (15)
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Itot

N
I, %?/ P(rij) (sin sr:l.:j)/sri:j dr

where P(rij) is the radial distribution function of electron i with

respect to electron j and is defined by

.f*' dv /ﬁrij

It should be noted that in this development no restrioctions on the form
of ‘Pk have been assumed. Any type of wavefunction, either correlated or
uncorrelated, may be employed.

It is convenient to define a total electron~electron distribution

function

.
P(r) = 2 & P(rid) -2 P(r - N §(r) (16)
i34 i3]
which is analogous to the total electron—nuclear distribution funotion
D(r). The §(r) denotes a Dirac delta function. Equation 15 can then be

expressed as

Iy = Ty [ fo" P(r) (sin sr)/sr dr + ¥ J. (17)

Therefore, the total scattered intemsity I is a two~electron property

tot
which depends on the radial distribution P(r) of electrons about other

electrons.

The electron=nuclear radial distribution D(r) and the electron=



electron radial distribution P(r) are related to elastic_and total
intensities, respectively, by Fourier sine integrals;vas seen in Equations
4 and 17. Experimental radial distribution functions may be deduced from
experimental intensity measurements by taking the appropriate Fourier

sine transforms, or

D(r) = (2/n) /.~ sr F(s) (sin sr) ds (18)
and

»P(r) = (2/n) fo“ sr (I,mt/rQl - N) (sin sr) ds. (19)

The lack of experimental data to s of infinity may be handled by a
procedure of the sort suggested by Hauptman and Karle (39). An experimen-
tal differentiation between elastic and total intensity is rarely carried
out but it can-be done, in principle, and has actually been accomplished
in practice b} Compton (40), at least for larger scattering angles.
Several experimental determinations of D(r) have been reported in
which electron-nuclear distributions were deduced from total intensities
(6, 7, 8, 41). In these determinations corrections for inelastic scat—
tering were made using calculations from approximate wavefunotions. The
natural information to be derived from total intensities, namely the
electron-electron distribution function P(r), appears not to have been
calculated, Inelastic corrections become smaller relative to the total
intensity as the atomic number inoreases. For light atoms, however, the

inelastic corrections in the most important angular range are comparable



to the elastié intensities. Consequently, the use of approximate wave=
funotions in the deduction of D(r) not only begs the question, logically,
but also may lead to serious error. Moreover, since D(r) is a one-
electron density function which is relatively simple to derive theoreti—
caily and since P(r) is a two=electron demsity function which is difficult
to calculate, it would seem to be not only more rigorous but also more
interesting to seek an experimental measure of P(r) rather than D(r) from
. .

tot®
The Hamiltonian operator for an atom may be taken, for the present

purposes, as

vij (20)

ni

H= LT, + &V, + 2 &
i >

j>i

where T, and vni represent kinetic energy and electron-nuclear potential

i
energy operators and where the Vij operators represent the electron-
electron repulsions. The distribution functions discussed in the preceding
~ paragraphs characterize the electronic behavior sufficiently to establish

the electronic énergy completely. The average potential energies are

v, - Z;.Vni - -Z fo"’ D(r)/r dr ' (21)
and
v, - f. 32;'1 iy .(1/2) S, P@r)/r ar. (22)

The total energy can be derived from the mean potential emergy by use
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of the virial theorem

5 = (1/2) ( V;e + T;e ). (23)

Energies derived in this manner may not be comparable in accuracy to
spectroscopic energies but do offer the possibility of obtaining the
electron=electron and electron—nuclear contributions separately, which

spectroscopic methods do not.

Theoretical Calculations

Electron=electron distribution functions

The distribution P(r) of electrons relative to other electrons in
the atom is an important two—electron property which has'received little
attention in the literature (42, 43, 44, 45). Since by Equation 17 the
total scattered intensity‘of x rays is directly dependent on this property,
an investigation of these distributions seems to be in order, .

The simplest electnoﬁic state which iliustrates the two=electron
aspects of P(r) is the 132 1S state, one for which quite accurate wave=
functions are available. We shall be concerned with wavefunctions for

these helium—like systems of the form

VG, 7)) = 8) ) X)) (24)

in terms of which P(r) can be expressed as (42)

o Ir, *r.| :
= orle X (e ) ey e [ By Biry)| ar, (29)
127l

P(ry,)



i1

and D(r) as

+
Dey) = orPr B )| 7.7, Wty 1 F Ve [k )| aryye 26
Iry=r,1

It is of interest to compare the behavior of D(r) and P(r) calculated
according to a‘correlationless analytical ﬁhrtree—Fock (HF) wavefunction
(46) and aécording to a correlated wavefunction of Roothean and Weiss (47)
which accounts for' 92 percent of the correlation energy. Such a compar~
ison for the ground state of the helium atom is made in Figure 1. Only_
one D(r) function was plotted in Figure 1 since the D(r) functions
calculated from the two wavefunctions ﬁere indistinguishable from each
other on the scale of the plot.

As discussed by several authors (48, 49, 50, 51), the Hartree-Fock
results are considerably more accurate for the one-eiectron density than
.for the two~electron density. For this reason it is not surprising that
the two D(r) functions are almost identical.

Calculations of D(r) and P(r) for helium-like systems with nuclear
charges of 3, 4, 6, and 8 based on the correlated analytical wavefunctions
of Roothaan and Weiss (47) and the analytical Hartree—~Fock wavefunctions
of Roothaan, Sachs, and Weiss (46) were carried out using the expressions
of Equations 25 and 26. A comparison of these results permits an assess=

ment of AP(rlz), where

8P(ry,) = Plryp) ooy = P(ryp) o

21

the shift in P(rlz) due to correlated motions of electrons, for 18~ °S
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Fige 1. Calculated electron-nuclear D(r) and electron-electron P(r) radial distribution functions
for helium. The enhanced electron avoidance implicit in the Roothaan-Weiss wavefunction
in comparison with the Hartree-Fock wavefunction is clearly evident,

(41
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electronic states with varicus nuclear charges.

The pair distribution functions P(rlz) calculated from the correlated
wavefunctions are shown in Figure 2. Plotted in Figure 3 are the "Coulomb
hole" functions AP(rlz).

The 15> +

S electronic states are, however, the simplest systems which
may be studieds In order to obtain information from more complex systems,
D(r) and P(r) distributions were calculated for the ground electronic
state of‘the beryllium atom. Analytical Hartree-Fock'wavefunotiong of
Roothaan, Sachs, and Weiss (46) and a configuration=interaction (CI) wave=
function of Boys (52) which accounts for 60 percent of the correlation
energy were employeds A comparison of results permits an assessment of
the shift in P(rij) due to electron correlation in a system with electron
pairs of both varying effective nuclear charge end differing orbital
occupation.

Plotted in Figure 4 are the P(rij).and D(ri) funoctions calculated
from the configuration-interaction wavefunction of Boys. Shown in Figure

5 ia AP(r where

ij)'

AP(rij) = P(r - P(r

i5er 145

the shift in P(rij) due to the inclusion of electron correlation.
Integrals involved in the determination of the one- and two-electron

distributions from all except the Boys wavefunotion (62) were ‘evaluated

numerically on an IBM 7074 computer using Gauss's quadraturé formula.

A nonuniform grid was chbsen with spacings such that further subdivision

had no effect on the D(r) or P(r) curve to seven figures. The accuracy



Fig. 2. Pair distribution functions P(rlz) calculated from the correlated wavefunctions

of Roothaan and Weiss for helium—like systems with nuclear charges of 2, 3, 4,

* *
6, and 8. The functions P(rlz)/z are plotted against the abscissa Z r where

12’
*
Z is an effective nuclear charge.
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Fig. 3. Differences AP(r ) between pair distribution functions calculated from correlated

and uncorrelated wavefunctlons plotted against the reduced radius Z vy,
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Fig. 4. Electron—nuclear D(ri) and electron-electron P(ri.) radial distribution functions

for beryllium calculated from a wavefunction due to Boys
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I R | | | | | !
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Fig. 5. Shifts in.P(riJ) due to electron correlation in the beryllium

atom. The function AP(rij)calo is the difference between

distribution functions calculated from correlated and uncorrelated
wavefunctions. The function AP(rij)est was estimated employing

the simple scheme outlined in the text.
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of the results was checked by use of Equations 21, 22, and 23. In every

case except 05+’ the energy agreed with the reported value to about five

figures. For 06* the energy agreed after correcting the wavefunoction for
& misprint in the reported expansion constantsl.

For the configuration-interaction wavefunction of Boys, analytical
expressions for D(r) and P(f) were obtained by a technique suggested by
Coulson and Nielson (42). The accuracy of the reauiting analytical
expressions was checked by calculation of all terms in the energy matrix,

In each case, the calculated energy agreed exactly with the published

value,

X=ray scattered intensities

'The total scattered intensity of x rays is direétly related to the
two~electron distribution P(r) as shown by Equation 16. For helium~like

systems, the intensity relationship is
Lot ™ ZIcl[ 1+ j'P(rlz)(sin srlz)/sr12 dr,, 1, . (27)
and the expression for the inelastic scattering factor becomes
2
S(s) =2 *2 J P(r,,)(sin sr,,)/6r,, dr,, = [/ D(r)(sin sr)/er drj . (28)

Plots of Itot/icl' Fa(s). and S(s) for helium are shown in Figure 6, as

calculated for the Hartree~Fock and for the more exact wavefunction of

1Weiss, A, W,, National Bureau of Standards, Washington, D, C., Cor—
related orbitals for helium~like systems. Private communication. 1964,
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Roothaaﬁ and Weiss., It can bq seen that correlation effects on the in=-
elastic and total intensities are significant. Only one Fz(s) curve was
plotted in Figure 6 since the functions calculated from the two wave=
functions- were indistinguishable from each other on the scale of the plqt.
Also plotted are the 1931 experimental values of Wollan (5), corrected
for recoil effects in the inelastic scattering (37). These results are
not sufficiently accurate to establish P(r) with any precision but they
are not inconsistent with the present calculations.

Only recently have inelastic scattering factors derived from Hartree=
Fock wavefunctions become generally available (35, 53, 54). For the most
part Heisenberg-Bewilogua (33, 34) scattering factors deduced from the
Thomas=Fermi statistical model have been used in the past. The statistical
model may be expected to-fail more seriously as the number of electrons
decreases, and accurate results cannot be expected for helium., For
purposes of comparison, numerical values of S(s) calculated for helium
are listed in Table 1. Computations were based on Hartree~Fock (46),
Hylleraas (55), and Roothaan-Weiss (47) wavefunctions,

Total, elastic, and inelastic scattered intensities for heliwm
like systems with atomic numbers of 3, 4, 6, and 8 were calculated from
both correlated (47) and Hartree~Fock (46) wavefunctions., Numerical
values of the elastic ﬁnd inelastic scattering factors are listed in
Table 2., The trend of correlated inelastic scattering factors S(s) as
atomic number increases is shown in Figure 7, and the influence of
correlation on scattered intensities is illustrated in the plot of AL/Icl

in Figure 8, where
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Table 1. Inelastic scattering factors, S(s), calculated for helium

(sin @/2)/N Statistical® Hartree-Fock® Hylleraas® Roothaan-Weiss®

0.025 0.49 0.02164 0.01812 0.02052
0.050 0.79 0.08474 0,07123 0.08032
0.075 0.99 0.1841 0.1557 0.1744
0.100 1.15 - 0.3121 0.2659 0.2952
0,125 1.27 0.45696 0,3953 0.4348
0.150 1.38 0.6176 0.5367 0.5833
0.175 1.46 0.7779 0.6835 0.,7344
0,200 1.52 0.9336 0.8297 0.8816
0.250 1.63 1.2138 1.1029 1,1385
0.300 1,70 : 1.4382 1.3336 1,3669
0.400 1.80 1.7275 1.6526 1.6621
0.500 1.86 1.8704 1.8241 1.8219
0.600 1.90 1.9376 1.9104 1.9082
0,700 1.92 1.9692 1,9533 1.9486
0.800 | o o 1,9842 1.9747 - 1.9722

8Reference 34.
b .

0% correlation energy, reference 46.
©70.0% correlation energy, reference 55.

d92.1% correlation energy, reference 47,

AIV‘/Iczl. ! (Itot)corr - (Itot)HF J/Icl

and (I

tot)corr and (I, )HF represent total intensities calculated from

tot

correlated and Hartree~Fock wavefunctions, respectively.
Plots of Itot/icl’ Fz(s), and S(s) for beryllium, as calculated from

the configuration=interaction wavefunction (52), are shown in Figure 9.



Table 2. Elastic and inelastic x-ray scattering factors, F(s) and S(s), calculated from correlated
and Hartree-Fock wavefunctions

(sin ﬁyb)/i Fcorr FHF corr - SHF Fcorr FHF scorr SHF
1s* BeZ" |

0.05 1,9837 1,.9837 0.03127 0,03246 A 1.,9915 1.,9915 0.01651 0,01700
0.10 1.,9360 1,9360 0.1212 0.,1258 1.9663 1.9663 0.,06498 0,06691
0.15 - 1.8606 1.8606. 0.2591 0.2691 1.9254 1,9253 0.1423 0.1466
0.20 - 11,7625 1.7625 0.4300 0.4468 1.8703 1.8703 0.2438 0.2511
0.25 1.6480 1,6480 0.6179 0.6421 1,8030 1,8030 0.3639 0.3748
0e3 1.5233 1.5233 0.8083 0.8398 1.7258 1.7257 0.,4962 0,5110
0.4 - 1,.,2657 1.2657 1.1565 1.1991 1.5510 1.5509 0.7747 0.,7974
0.5 1.0238 1.0236 1.,4291 1.4761 1.3639 1.3639 1,0406 1.0699
0.6 0.8147 0.8146 1.6231 1.6682 1.1792 1,1792 1.2712 1.3047
0.7 0.6432 0.6430 1.7538 1.7932 - 1.0068 1.0069 1.4580 1,4931

0.8 0.5066 0.5066 1.8395 1.8717 0.8523 0.8523 1.6026 1.6367
0.9 0.3996 0.3996 1.8948 1.9202 0.7176 0.7176 1.7108 1.7425
1.0 0.3166 0.3166 1.9304 1.9499 0.6025 0.6025 1.7903 1.8185

¢t of*

0.1 1.9860 1,9860 0.,02741 0,02797 1.9924 1.9924 0.01502 0.01524
0.2 1.9448 1.,9448 0.1068 0.1089 1.9697 1.9697 0.05919 0,06008
0.3 1.8791 1.8790 0.2300 0.2347 1.9329 1.,9329 0.1301 0.1320
0.4 1.7926 1.7925 0.3857 0.3935 1.8831 1.8830 0.2238 0.2271
0.5 1.6901 1.6900 0.5607 0.5720 1.8218  1.8217 0.3356 0.3406
0,6 1.5767 1.5765 00,7426 0.7573 1.7510 1.7509 0.,4603 0.4672
0.8 1.3356 - 1.3353 1,0881 1.1085 1.5886 1.5885 0.7276 0.7284
1.0 31,1003 1.1000 1,3716 1.,3950 1.4115 1.,4113 0,9899 1.0041
1.2 0.8897 0.8895 1.5811 1.6044 1.2331 1.2329 1.2235 1.2400
1.4 0.,7115 0.7113 1.7259 1.7470 1.0632 1.0630 1.4174 1.4350
1.8 0.4498 0.,4497 1.8842 1.8989 0,7703 0.7702 1.6869 1,7034
2.0 0.3582 0.,3581 1,9243 1.9359 0,6509 0.6508 1.7732 1,7882

¥e



Fig. 7. Reduced inelastic intensities S(s) for xgzray scattering by helium-like systems

plotted against the reduced variable s/Z . Correlated wavefunctions of Roothaan
and Weiss were used in the calculation of the intensities,
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Fig. 8. Influence of electron correlation on tgtal intensities of x rays scattered by
helium~like gystems. The functions =2 Al (s)/Ic are plotted against the reduced
varisble s/Z’ to illustrate the scaling of the }unctions implicit in Equation 27,
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~ scattering by beryllium as calculated from a wavefunction of Boys
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Plotted in Figure 10 is 8I , /I ., where

et = Twr = Tor
the shift in total intoﬁsity due to correlated motions of electrons in

the beryllium atom.

Discussion

The plots in Figures 1 and 3 olearly indicate that two-electron
density functions are sensitive to the inclusion of correlation in the
wavefunotion. Shifts in the two-electron density also cause clearly
discernable shifts in £he total and inelastic intensities of x r#ya.

The electronrélectron distribution curves P(rlz) for the helium-
like systems calculated from the correlated wavefunctions shrink inward
as the atomic number increases in the same manner as do the electron-
nuclear distributions D(r). As shown in Figure 2, the various P(rlz)
are roughly congruent when divided by an effective nuclear charge Z‘
and plotted against the product z‘r. The effective nuclear charge adopted
in plotting Figures 2, 3, 7, and 8 was the Slater rule value (66), (2 -
0.3)e No attempt was made to obtain an optimum value of the screening
constant. Curl and Coulson (46) in an independent study of the same .
systems had also noted that a slightly larger value of ¢ in the expression
z‘ = Z - 0 would lead to better acaling.

The effect of electron correlation on P(rlz), as shown in Figure 3,
also shows a strikingly simple trend with atomic number. A knowledge of

how rapidly AP(riz) contracts as nuclear charge inoreases coupled with




31

0.10

0.05

0.00

BERYLLIUM

0.05

0.00

L l I I l

Fig L] 10.

5 10 15 20 25
s, &t
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scattered from beryllium atoms. The curve BI o 1/1,, Wes
derived from intensities calculated from Hartree-Focl% and
correlated wavefunctions. The function AI s t/Icl was estimated
employing the scheme outlined in the text.°
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-

the fact that maeny pair correlation energies are available (57, 58, 59)
should simplifly the estimation of corrélation effects in more complex
systems.,

Electron-nuclear distributions D(r) and mean potential energies V;B
are one-electron density functions and, accordingly, are expressed almost
as well in terms of Lartree-Fock wavefunctions as in terms of properly

correlated wavefunctions. It follows from Equations 21, 22, and 23 that

the correlation energy is given very nearly by

B opr™ (1/2) fAP(rlz)/r12 dry,.
Since Ecorr for the helium~like systems is almost constant (60), the
integral of AP(rlz)/r12 over all r,, space, or equivalently, the integral

»
of AP(rlz)/'Z*r12 over all Z r,, space, should be constant. It is apparent

12
from Figure 3 that not only is the integral virtually the same for all
systems but the integrsnd itself, AP(rlz)/Z*rlz, is almost invariant when
expressed in terms of the reduced distance Z*rlz. This is an even greater
simplification for AP(rlz) than might have been anticipated from the
constancy of correlation ensrgye.

From the trends illustrated in Figures 2 and 3 it appears that the
zero point in the AP(rlz) is closely related to the maximum of the P(rlz) !
function., In the event that this relationship is found to hold in general,
known correlatién energies will make possible simple estimations of
correlation effects in'P(rlz) and Itot for more complexvsystems. If some
plausible §hape be adopted for a correction function AP(rlz), the radial

scale factor presumably can be established from the effective nuclear
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charge. The remaining parameter for AP(rlz), the amplitude, can 'be estab-
lished with the aid of Equation 31.

As a first approximation, the ground state electronic wavefunction of

an atom may be taken to be

V=A@ Xz(z) e oo (M) )

where the Xi(i) are spin~orbitals from any convenient orthonormal basis
set and A is the antisymmetrization operator. The expression for P(r)

then may be shown to be

N X
P(r) = & X Pkl(r)
.k 14k
where Pkl(r) represents the pair distribution function for the kth and

1th electrons. If we assume that the effects of electron correlation on

these pair functions can be approximated by a function with a zero point
at the maximum of the pair distribution curve and of the same shape.shown
in Figure 4, we may calculate APki(r) curves by using known correlation
energies to establish the amplitudes. The sum of these APkl(r) would then
be the total effect of correlation on P(r). In addition, the effect of

correlation on the total observed intensity would be
81 = I, { / aP(r) (sin sr)/sr dr J.

A convenient, but by no means unique, choice of basis functions )‘i (1) is

the s, p, and d orbitals used by chemists. One advantage of this choice
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Table 3. Pair correlation energies eij and radial values T hex for the

maxima of the pair distribution functions in beryllium

Pair e. . r Pair : e. r
ij max ij max
(eV) (a.uo) ’ (QV) (aou.)
1s-1s -1.196 0.44 2s=23 -1,195 3.25

‘1s=28 -00176 2 .10

is that numerous values for pair correlation energieé have been calculated
for this basis.

It is of interest then to use this scheme to predict the AP(rij) and
Al funojions for the beryllium atom, and to compare the simple prediction
with the Coulomb hole calculated from the wavefunctions., In Table 3 are
found estiﬁ;tes of the correlation energies associated with the various
electron pairs in the atom (58) and the maxima of the pair distribution
functions Pls,ls’ Pls,Zs’ and Pés,Zs derived from one-electron Hartree—
Fock orbitals (46). The AP(Z*rlz) function employed in the calculations

2+
was that of the Be ion.

Plotted in Figure 5 aré the AP(riJ) curve calculated from the wave— ‘
functions and the AP(rij) predicted using the simple scheme outlined

above. The corresponding shifts in the total intensity, both calculated
and predicted, are shoyn in Figure 10,

The general shape of the predicted and calculated functions are the

same. The base lines, however, are not the same for both., The possibility
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exists that the principal discrepancy between predicted and calculated
functions is a result of the correlated wavefunction including only 50%
of the correlation energy. Only more detailed calculations could verify
this supposition. In any case, it‘appears that the simple scheme provides
at least a rough estimate of the shape of the Coulomb hole from which
gross estimates of effects of Coulomb correlation on scattered intensities
can be deduced.

The rough agreement between simple approximation and theoretical
calculations implies that the largest relative effects on x-ray scattering
may be expected for shells of smallest effective nuclear charge and
greatest radius in the atom. The correlation effect on inelastic scatter—
ing at small angles by K electrons diminishes from about 6% for helium to
about 1% fof oxygen. At large angles S(s) approaches the number of
electrons causing the scattering irrespective of nuclear charge or
correlation. In many electron atoms it is likely that precise measurements
of intensities of inelastically scatteréd x rays will reveal effects of
several percent, in comparison to Hartree=Fock calculations, attributable
to correlation effects on valence electrons. Inner-shell effects will
be smaller and delocalized over a greater range of s, and will be
correspondingly very much ﬁore difficult to detect.

For a two electron system, a meaningful study of electron correlation
itself could be made rather than simply a study of observables influenced
by correlation. From slastic intensities it is pqssible, in principle,
to determine the electron=nuclear radial distribution function D(ri).
From D(ri), in turn, it is possible to construct a product wavefunction

which reproduces this D(ri). Such a wavefunction should correspond
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closely to a Hartree=Fock function because Hartree=Fock D(ri) distributions
are almost indistinguishable from exact distributions (48, 49, 50, 51).
Accordingly, a P(rlz) function could be calculated from the "experimental
._Hartree~Fock" function and compeared with the experimental P(rlz) function
derived from the total intensity. In this way an experimental determina=-.
tion of the Coulomb hole is possible.

Expressions for electron diffraction studies of gas atoms and
molecules which are analogous in form to Equatioms 13 and 17 may be"
derived by making assumpfions somewhat more severe than those for x~ray
diffraction. As in the case of x rays, the model considered is non~
relativistic with the incident energy large compared with excitation
energies. If polarization and exchange are ignored, expressions for
intensity paralleling Equations 1 and 2 for x rays result (61). The only
ad justments which must be made are that nuclei as well as planetary
electrons scatter wavelets, but with amplitudes =2 times as great, and

that Ic for electrons is given by the Rutherford scattering law (62)

1
rather than the Thomson equation (36).
For a gas molecule, the intensity expression for an averags over

random orientation of the molecules is exactly analogous to Equation 17

(63), or

R 3 .
Lot ™ Lo1 }52; 2.2, S P“v(r) (sin sr)/sr dr (29)
where the sum is ‘over all particles, nuclei and electrons alike, with Z“
standing for atomic number if p is a nucleus and standing for -1 if u is

an electron, and Iﬁl is the Rutherford intensity (62). For a gas atom,
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Bquation 29 reduces to

_Itot = Iil [Z2 - 22 E:/'D(ri)(sin sri)/%ni dr,
+ i.%j:f P(rij) (sin srij)/srij drijfl (30)

in which i and j denote electrons. Equation 30 may be reduced to the
conventional electron diffraction expression for atoms by use of

Equations 4, 13, and 15, or
I, = 1o [ (@F(e)? + 5(s) (31)
tot cl *

The corresponding expression for the elastic intensity is

elas Iil [ 2-F(s) jz'

Effects of electron correlation are manifested, therefore, in the
total intensity of electrons scattered from gas atoms. The greater
uncertainty of the theory, as discussed above, detracts from the feasi=
bility of these studies employing electron diffraction. It is interesting
to note, however, that the expression for inelastic scattering of electrons
is probably nbt sensitive to errors in the Born approximation (63).

The Born approximation gives the correct expression for the intensity
scattered by an isolated charged particle even though it gives incorrect
phases of the scattered waves. It also gives essentially correct

interference terms for the scattering by a system of particles of identical
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charge. It gives incorrect interference terms for a pair of particles of
significantly different charge. The electron=electron terms of Equation
30, which include inelastic scattering, are probably accurate. The
electronrnuclear_terms are less reliable but, since they contribute only
to the elastic scattering, their uncertainty is less serious in correlation
studies. )

Further applications of this general approach in electron diffraction

have been discussed by Bonham, et al. (61, 64).

Experimental Distribution Funoctions
Mothod

Earlier in this dissertation it was pointed out that experimental
studies of x-ray scattering by gas atoms can reveal not only D(r), the
radial distribution of electrons around nuclei, but also P(r), the radial
distribution of electrons with respect to other electrons, In experimanta;
work published to date (4, 6, 7, 8) attention has been focused only on the
simplier property D(r), a property which can be calculated quite easily'
with considerable accuracy because it is insensitive to electron
correlation. The distribution P(r) is intrinsically much more interesting,
however, because its form depends on electron correlation, the major
stumbling block to accurate quantum calculations.

Intensity expressions for scattering of high energy x rays, according
to the nonrelativistic approach of Waller and Hartree (2), were givon—in
Equations 13 and 17. These expressions were derived neglocting recoil
offects in the inelastic events and assuming an infinite incident beam

energy, however, and corrections to experimental data may be necessary to
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compensate for these deficiencies. An alternative expression for the

total intensity, including correction for recoil, is (37, 65)

I ELORTRION (32)

where Q, a correction for recoil in the inelastic events as discussed by
Breit (66) and Dirac (67), is equal to [1 * thz/bﬂzmc]-s and h is
Planck's constant, m the mass of an electron, and ¢ the velocity ofv_
light. If Q is taken to be unity, Equation 32 becomes identical to
Equation 13. Because of assumptions mentioned earlier, if x-ray energies
are not sufficiently high in compaéison with energies of allowed
electronic transitions, Equations 32 and 17 are only approximﬁtely
correct. Bonham las shown how corrections for this source of error may
be made (68). If suitable corrections are made to Itot for effects of
recoil and finite incident beam energy, experimental P(r) functions
may be deduced from intensity measurements by taking a Fourier sine
transform as shown in Equations 17 and 19,

The lack of experimental data for s values larger than 4m/1
necessitates the use of an extrapolation procedure to obtain the
Fourier sine transform of the observed intensities. The method chosen
in the present investigation of P(r) was similar to ome proposed by .
Hauptman and Karle (39) in studies of D(r) and involved the fitting of

experimental intensity data with an analytical function of the form

. 2.1
Ical/Icl N * i§‘l’. ai/( 1fbis ). | (34)
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The constants b, and 1, are positive numbers and N is the number of
electrons inﬁthe atom. Hauptman and Karle restricted the a; values to
positive numbers in order to insure a non-negative distribution function.
In the present calculations, however, the only restiiction placed on the

e, was that the distribution generated by the analytiocal function be

i
non~negative. Ths relaxation of the restriction that a; be positive
allowed more rapid convergence of the parameters and a better fit of the

data. The constants ay and b, for the best fit were obtained bj use

i
of the Gauss~Newton method of least squares. Calculations were repeated
several times with different choices of li and n in order to obtain
accurate fits with a reasonable number of terﬁs and to determine the
sensitivity of the fitting procedure to the set of functions adopted.

An indication that the functions were adequately flexible was provided
in fits of theoretical intensities. Deviations in these fits were
negligible.in comparison with the scatter of experimental data points.

Once the parameters of Equation 34 are determined, the Fourier
inversion required to obtain P(r) can be done analytically. The
resulting functions are given explicitly by Hauptman and Karle (39).

The experimental data chosen were those of Laurila (69). More
accurate data ars available over -a limited range of scatteiing variable
(70) but the Laurila data are the most accurate data which span a
sufficient range of s to allow the Fourier inversion to be carried out

definitively over the desired range of r. Corrections for recoil effects

in the inelastic intensity were made by means of the relation
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2 . :
= <+ - -
Lot/ Tor = ogy/Tea] * @ = DI /1)) = FG)™ 1. (35)
Values of F(s) for neon and argon were taken from the work of Freeman
(71) and Berghius, et al. (72), respectively. The corrections were small
and insensitive to the exact form of F(s). No corrections were made for

the effect of the limited beam energy (68).

Results

Experimental x=ray intensities for neon and argon réported by
Laurila (69) are given in Table 4 along with intensity values corrected
according to Equation 35. Analogous theoretical values constructed from
self consistent field inelastic (73) and elastic (71) scattering factors
afe listed in Table 5. The theoretical and corrected experimental values
were fitted by analytical functions of the form specified in Equation 34.
In the case of the experimental data, an extra unobserved point
Itot(O)/Icl = Z2 was added to aid in the atﬁainmsnt of a reasonable
behavior as s approached zero. Although an intercept of Z2 is demanded
by theory, an uncertainty exists in the.experimental vertical scale
factor., Therefore, the assumed data point at s = 0 was no more heavily
woighted in least=squares fittings ?han the other data points., The
resulting parameters of the curve fittings are shown in Table 6.
Numerical values calculated from the analytical representations are
listed in Table 4.

The associated electron=electron radial distribution functions
?(rij) derived from the experimental data and from the correlationless

theoretical intensity values are plotted in Figures 11 (b) and 12 where



Table 4. Experimental x~ray intensities for neon and argon derived from Laurila's data, The reduced
' quantities I p/icl’ tot/ o1’ and I I/icl represent, respectively, original experimental

values, values after correction for recoil, and values calculated from s flex1ble
enalytical function adjusted by least squares to fit It t/ ol

(sin ﬂV%)/X Iexp/icl Itot/Icl Ical/Icl Iex Icl Itot/&cl Icar/Icl
Neon Argon
00,0000 100,0 100,0 100,15 324,0 324.0 323.91
0.1229 83,20 83.20 82 .45 250.0 250,0 250,92
0.1536 74440 744,40 744,53 222 .3 22243 221.08
0.,1841 65.25 654,25 66,40 192.6 192,.6 192,47
0.2146 58,40 68,40 58446 166.1 166.1 166.68
0.2449 52 435 62 ¢35 51.08 144.4 144 .4 144,75
0.2751 44,50 44,50 44,45 127 .4 127 .4 126.78
0.,3053 384256 38.25 38,65 1120 112.0 112.46
0.,3352 : 334,10 33.10 33,77 101.0 101.0 101.40
0.,3650 29,90 29,90 29,71 93.96 93.96 92,90
0.4241 24.40 24,40 23,73 81.36 81.37 81.29
0.4824 19,72 19,73 19.86 73.80 75.81 73489
0.5398 17,00 17.01 17.30 67.50 67.51 68.37
0.5960 15.33 ‘ 15.34 15.53 63.72 63.74 85.62
0,7062 13.39 13.41 13,19 55,71 55,73 54,93
0.8089 12,01 12,04 11,75 46,89 46,92 . 47,32
0.90656 10.78 10.82 10.86 41.49 41,53 41,12

0.9972 10,06 10,10 10,34 35,82 35,88 36435

(47
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Teble 5. Reduced intensity values Itot/'Icl for neon and argon calculatzd

from elastic and inelastic scattering factors

(sin g/2)/\ Neon “Argon
0.0 100,0 324,0
Ol 88,48 271.4
0.2 63.75 179.4
0.3 41.31 116.6
0.4 26,94 84,67
0.5 19,13 68.46
0.6 15.12 58,72
0.7 13,06 51.43
0.9 11.41 38,19
1.1 10.90 30,12

Table 6. Constants derived from least-squares fits of experimental and
theoretical intensity values using the function specified by
Equation 34

1l a b. 1. a b
i i i i i i
Neon
Experimental Theoretical
2 10,26 0.01107 2 27.31 0.,02235
6 60.16 0,02897 6 =62417 0,02343
6 47 .54 0,00449 6 ~45,92 0.006936
6 =316 .26 0,01190 6 462 .59 0.01208
6 562.65 0,01510 6 -673.62 0.01425
6 -263,68 0.02056 6 381.81 0.01809
Argon
Experimental Theoretical
2 351.29 0.01999 2 368,33 0.02172
4 241.23 0.,03623 4 305,49 - 0.04129
6 87.99 0.006195 6 ~445,17 0.008333
6 649,97 0.00950 6 =1366.0 0.01764
6 ~1024,.58 0.008442 6 1443.3 0.01608
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Fig. I1. Nuclear-electron D(ri) and clectron-electron P(r..) radial
distribution functions for neon. (a) Distributionstalculated
from single determinant wave function based on orthogonalized
Slater-type orbitals with exponents optimized by Tubis. (b)
Light lines represent distributions calculated from self con-
sistent field wave functions. Heavy dashed line represents
P(r;j;) derived from Laurila's experimental x-ray study.

{c) Igough estimate of the effect of electron correlation on
P(r;.). AP(rij) is enlarged five-fold in comparison with the
other functions.



Fig. 12, DNuclear-electron D(r,) and electron-electron P(ri ) radial distribution functions for argon.
Light lines represent distributions calculaeted frgm self consistent field wavefunctions.

Heavy dashed line represents P(rij) derived from Laurila's experimental x~ray study.
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they are compared with conventional electron—nuclear radial distribution
functions, D(ri). The wavefunctions from which the neon and argon D(ri)
were calculated were analytical self consistent field functions due to
Allen (74) and to Watson and Freeman (75), respectively. Figure 11 (a)
depicts the theoretical P(rij) and D(ri) calculated for neon‘from a
single determinant wavefunction in which individual atomic orbitals were
taken to be orthogonalized Slater—=type orbitals with exponents optimized
by Tubis (76).

It is of interest to determine whether x-ray diffraction is likely
to be of practical value in deriving electron distributions in atoms.
It is not immediately obvious from a comparison of the experimental and
self consistent field theoretical distributions whether the discrepancies
are due to experimental error or to correlation effects. In order to
help resolve this question, the influence on P(rij) of experimental
uncertainties and, in addition, the effects of electron correlation were
investigated. The correlation effects were estimated using the technique
described earlier in this dissertation, Values of the pair correlation
energies were estimated from the ensrgy values of Cleﬁenti (59) and the
AP(Z*rlz) used as a reference curve was that of the BeZ+ ion. The
predicted effects of correlation, which'are portrayed in Figure 11 (c),
must be regarded as speculative but the order of magnitude is probably
not in error.

Rough estimates of thg ugcertainty in the experimental P(rij)
functions due to scatter of the data points and to the réstricted angular
range were made. For ﬁeon the uncertainties were approximately 0.056 irom

interelectronic distances of 0.2 to 1,0 a.u., and 0.03 from 1.0 to 2.5 a.u.
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For argon they were 0,04 from 0.25 to 1.0 a.,u. and 0.03 from 1.0 to

2.2 a.us The lack oflexperimental data for small and for large scattering
angles prevents an accurate estimation of P(rij) outside iy " 2.5 and
insgide rij = 0,2 a.us The values shown for the experimental curves at
large radii are determined by the eiact form of the somewhat arbitrary
analytical functions of Equation 34 in the unobserved small angle
scattering region. The values for.small radii are exceedingly semsitive
to the choice of vertical scale factor selected in the reduction of the
exporimohtal arbitrary intensity values to values appropriate for
comparison with theoretical, This scale factor determines the speed

with which the corrected experimental intensity values appear to approach
the asymptote & at large scattering angles. It governs, aocordingly, the
speed with which P(rij) appears to vanish as Tyy approaches zero. .The
angular range over which scattered intensities must be measured in studies
of P(rij) is similar to the range required for D(ri). Such requirements

- are discussed by Bartell and Brockway (77).

Discussion

The experimental electron—electron distribution functions are of
a very reasonable shape and, indeed, in the case of neon at least,
seem to be more accurate than P(rij) distributions calculated from simple
Slater-type orbital determinant wavefunctions. The Slater~type orbital
peaks shown in Figure 11 (a) are not as diffuse as the actual peaks in
D(ri) and P(rij) functions. On the other hand, the curves in Figure 11 (b),
together with the error estimates in the previous section, indicate that

the Laurila d&éa'are not reliable enough to show effecté of electron
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correlation,

It is possible #o derive mean electron-electron contributions vij
to ‘the potential energy by averaging the electron~electron repulsion
term ;/513 over the P(rij) function. A sum of vij over all pairs of
electrons yields the total electron-electron potential ene;gy in an
atom. The vij for neon and argon ocaloulated from the analytical fits
of the experimental data are 1.12 a.u. and 1 40 a.u., respectively,
Corresponding values of 1,20 a.u. and 1.36 a.u. were calculated from the
wavefunctionsvstudied (74, 75). This comparison strengthens the
conclusion that the experimental P(rij) functions are qualitatively
quite satisfactory but quantitatively uncertain by an amount greater than
the correlation effect. ’

In the case of helium the relative vertical shift in P(rlz) due to
electron correlation is about 10% over a large range of Tyo0 giving a
maximum shift of about 0,06 in P(rlz). Therefore, x-ray data for helium
accurate to, say, 2% over a reasonable range of scattering variable could
determine an experimental P(rlz) funotion of appreciably greafer accuracy pl
than a Hartree=Fock functioﬁ. Polyelectron atons preseﬁt more of a
problem. Correlation effects on intensity increase roughly linearly
with N, whereas the intensity itself increases approximately with the
square of N, Therefore, correlaﬁ}on effects on individual terms P(rij)
get diluted as N increases. The avaragedborrelation effect in the P(rlz)
of helium with N = 2 is about 0,03 from 0 < Ty < 2, The characteristic
uncertainty of about 0.04 in the P(r ) caloulated from available data '
for neon (N = 10), and argon (N = 18) suggests that it will not be a

simple matter to derive experimental distributions in polyeleotron systems
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that are comparable in accuracy to Hartree-Fock distributions. Recently
x~ray data accurate to 1/4% over a limited range of scattering angle

have been obtained by Chipmaﬂ and Jennings (70). If data of this accuracy
could be obtained over a considerably larger range of s, éxperimsntal
documentation of Coulomb hole functions would be possible for at least

the lighter atoms.
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ELECTRON DIFFRACTION STUDY OF XENON HEXAFLUORIDE

Theoretical Expressions

Theoretical expressions for the scattering of high energy electrons
by molecules were developed by Mott (78), Wierl (79), and Debye (80).
Corrections for anharmonicity of vibration (81), failure of the Born
approximation (82, 83, 84), and finite beam energy (68) have been added
to the original expressions in recent years.

When high ehergy electrons encounter a molecule they are scattered
by both planetary electréns and atomic nuclei. The total observed
intensity may be separated into that scattered from the individual atoms,
Iat’ aﬁd that resulting from the geometric arrangement of the atoms in the
molecule, Imol' If the energy 6f the incident electrons is assumed to be
large in comparison with energy differences between bound states of the

system, the contribution from atomic scattering may be given as
4 2 '
Iy = (&/s7) [{: (2, = F;(s))" +58,(s) ] (36)

where the sum is taken over all atoms in the molecule, Fi(s) and Si(s)
represent the elastic and inelastic x-ray scattering factors for atom i,
respectively, and K is related to the incident beam'intensity, the number
of atoms encountering the beam, and the distance between the point of
interaction ;nd the point of observation (77). The contribution from

molecular scattering, under the same energy conditions, may be given as

1 = (%/e%) E;?'[Zi-i‘i(s)][z 751 /By (r) (otn or)/ar ar (a7)
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where the double summation is over all i and J except for i=j and P, J(r)
is the probability distribution function for the separation of the ith
snd §*® atomic nuclei.

It is convenient in structural studies to work with a reduced

intensity function M(é) , where
u(s) = Imoi/I"a{:» = [(Itot/Io.t) -1].

If the Pi J(r) are approximated by Morse distribution functions (86),
and corrections for failure of the Born approximation included (82), the
theoretical reduced intensity function may be expressed as

' . 2 2
Mth(a) -%ZJ: cijUi;j(s) exP(.(lm)ijB /2) (cos Anij)

x sin a(r (1) * Bla), )/sr,), 4 (38)

where
' 2
Gyg " ziz/ E‘ @ + 2,0,

A

Uy46) = [2y = F(0)]I2, - Fy(e))/L0 4( 2 (2,=F, (8))? + 5,(s))),

(lm) 13 is the effective root mean square amplitude of vibration of the
ijth atom pair (87), (cos bn, J) is the phase shift correction for failure
of the Born approximation (82) . rg(l) 14 is the center of gravity of the
" Jth

associated with the i;jth anharmonic oascillator (87), and (re) 13 is the

distribution P, J(r)/r (87), #(s) 13 is the frequency modulation term
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equilibrium distance for the ijth atom pair.

Method of Analysis
Apparatus |

The electron diffraction apparatus used in this experiﬁ;nt was
construoted at Iowa State University and has been described in the
literature (88). It is similar in many ways to the electron diffraction
unit at the University of Michigan (89). A schematic diagram is shown
in Figure 13, _

A heated filament is used for the electron source. Electrons emitted
from this filament are accelerated through a potential difference of
40,000 volts and are focused by a magnetic lens in the instrument.
Diffraction patterns are obtained by interaecfing the focused beam of
electrons with a narrow stream of gas molecules, Scattered electrons are
recorded on four by five inch Kodak process plates and heart=shaped
rotating sectors are used to compensate for the rapid falloff of intensity
with increasing scattering angle (86).

Data were taken at two different camera lengths, 21 cm. and i1 cm.,
using a sector with an angular opening proportional to the cube of the
sector radius. In order to obtain accurate data for small scattering
angles,‘pictures were taken at the 21 cm. camera distance using a sector
with an angular opening proportional to the square of the radius. Camera
distances were measured with a cathetometer and reliable data were
obtained for the range 2.5 < s < 39.1.

A XeFe sample of 99.8 mole~percent purity was provided by Dr. C. L.

Chernick of Argonne Labs, It was contained in a specially constructed
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Table 7. Experimental conditions

Camera Sector Sample Sample Exposure Beam
Distance Temperature Pressure Time Current
21,089 r? -8 °¢ 1.7 mm. 7 sece  1.12 pamp
21,051 P 20°% 18 mm. 8 sec. 1,12 pamp
11,084 > 20 °% 18 mm. 10 sec.  1.12 pamp

monel system, complete with a nickel nozzle, which could be attached
direotly to the electron diffraction unit. Due to the high reactivity
of the compound, special care was taken in handling the containers and
in preparation of the diffraction unit. The customary Television Tube
Koat was removed from metal parts of the unit which would have contact
with the molecules, and all sections of the monel.system‘were pre~
conditioned with chS' The sample was injected into the apparatus as
received from Argonne without transfer into other containers,

Sample temperature, pressure, exposure time, and beam current

recorded during the course of the experiment are given in Table 7,

Processing of data
Six apparently flawless plates from each of the three different

distance~sector combinations were selected for analysis, The diffraction
patterns were measured on a modified Sinclair-Smith microphotometer.
Phototube voltages were obtained using a voltage=to-frequency converter

and a walott-fackhrd electronic counter-digital recorder. The plates
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wers spun about their centers during the microphotometering in order to
averag§ out emulsion defects. The rotational velocity was adjusted to
insure that the plates rotated exactly three fevolutions during the one
second counting period employed for the reading of each point. Readings
were taken at 0.25 mm. intervals while scanning completely across the
plate from right to left. Since readings were taken on both sides of the
center of rotation for each of six plates, a total of twelve voltage
values were used to obtain each experimental intensity pdint.

Mean absorbancies for each plate A, were calculated from

J
'KJ = [(Ap + AL)/Z 1 -Dp/a.6

where the subscripts R and L refer to data taken to the right and left,

respectively, of the center of spin and
by = 10 [(Vy00 = Vg) / (= VI,
Ay = log [(Vyg0 = Vo) / (¥, = VO,
D = (av - Avoj / W= V) + AV, / (Vg - V2),
&y = (Vg = Vo),

AV = (Vh - VL) for Vp and YL at the maximum r value,
The Vé and Vg are the initial and final dark current voltages, leO a
clear plate reading, and V the voltage read from the spimning plate. The
D term is a correction for drift in the instrument during the recording

of data and ViAis Vh at the maximum radial value,
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A check for centering error and for random scatter of the readings
due to fluctuations in the microphotometer circuits was made on each
plate. A plot of the differences between AR ~ud AL was made and a set
of readings was considered usable if undulations due to centering error
were no more than 0.4% and fluctuations due to random scatter were less
than 0.1% of the absorbancies, '

Relative intensities for each plate wefe caloulated using the

relation (90)
Ij(a) -I;]( 1 N-KJ )

where oL was taken as 0.1, The average leveled intensity Io(s) was

calculated from

6 ‘
I(s) = 3)7:'1 I3(s)8, /6

where E, represents an exposure correction to put all plates on the same

J _
basis, and I?](s) denotes the leveled experimental intensity from the j°°

plate, The I;(s) were obtained from (91)
13(6) = K(1y(6) = I, ()] [, ()/") (s00’p)/1,,

where r is the radial coordinate of the photographic plate, g 18 the
scattering angle, and ﬂ. o(r) is a sector correction funotion. The constant
n is two for data taken using the rz-seotor end three for data taken using

the rs-seotor. The I j(°) ‘are relative intensity values recorded by the
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plate and Iext(s) are extraneous intensity valﬁes recorded under
conditions identical to experimental conditions except that no sample was
being passed through the nozzle.

Correction functions ﬂ;c(r) for the sectors made use of comparisons
of experimentglly observed and theoretically calculated intensities for
monatomic gases. Soattered intensities from argon were blended with
readings from an optical comparator to calibrate the rs-seotor. Data from
~ both neon and xenon were used to calibrate thé4r2-sector. For the rz-
sector, the calibration curve ﬂie(r) derived from xenon data, & = 54,
differed appreciably at small r from the calibration curve ﬂﬁe(r) derived
from neon data, 2 = 10, The reason for the discrepancy is probably a
breakdown of the eﬁergy approximations used to obtain Equation 56. For
the xenon atom, the energy differences between bound states of the atom
are not small compared to 40,000 electron=volts. In order to compensate
both for imperfections in the sector and inaccurate atomic scattering
factors for xenon, a sector calibration curve for use in the analysis of
'XeF,, data was constructed from a weighted average of neon and xenon

6
calibration curves. The weighting was made according to the formula

g, (x) = [ oo+ 61, I/ To/By (r) *e Ipo/Pre () 1,

where Ixe

at
xenon and fluorine atoms, respectively.

and Iit are theoretical atomic intensities for scattering from

Analytical functions approximating Fi(s) and Si(s) were used to

calculate the elastic and inelastic scattering factors at arbitrary
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Table 8, Parameters used for calculating elastic scattering factors for
xenon and fluorine

atom - 8y b 1 1 1
F - 24,00 «00098 2
14,00 0115 4

=-1,00 0773 8

1.00 0124 15

Xe =2.16 «0000098 2
0.85 - 000032 3

10.13 «000078 4

-34,62 000489 4

=56 .45 «00041:0 5

48,32 «000391 6

36.36 «000406 4

=42 ,99 «000536 5

87.96 «000553 6

=16,.65 «001219 6

=78.,47 «001413 7

66.60 «001456 8

40,60 «004108 6

-6.71 004834 8

61.15 «03299 8

=106,.51 02718 9

57.23 02128 10

s values. A function of the form
F,(s) = Za,/(1+0v,.0%)
1 g3 J
was used to approximate the elastio scattering factors (39, 92).

Numerical parameters for Fi(a) are listed in Table 8. The Heisenberg-

Bewilogua (33, 34) approximation was used to calculate Si(s) values,.
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Experimental reduced intensity data M(s)exp were obtained frbm the
leveled intensity by dividing Io(a) by an experimental background function
'IB(a)A. 1r theor); and experiment were perfeot,l IB(a) would be a constant
for all s values. Since in practice these conditions are never rully
satisfied, a smooth curve was selected to represent IB(s) and the

intensity curve divided by this background funotion to obtain u(')exp' or

M(s) g = [15(8)/15(8)] - 1.

Intensity curve analysis

The intensity curve method of analysis (93) attempts to pstabliuh
simltaneously the background intensity and the molecular distance and

amplitude parameters. The weighted sum over experimental points

2wy [1,(8) g = L ()

calc

is minimized with respect to variation of both moleoular parameters and

background coefficients. The calculated intensity is given by

I(8) 00 = Tp&) 1+ RU,(s) T,

where R is the index of resolution, and IB(s) is an analytical baockground

function of the form

IB(I) - 1%0 uisi *a exp(=ots).
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Expansion constants for this background function are calculated employing
a least-squares technique to minimize the difference between a correlation

background, Ib(s), where
IL(s) =1 (s)/[1+RMU, (s) ],

and the background intensity function I;(s).

Estimates of the 1ntorpuolear distances and amplitudes of vibration
are used to calculate the initial Mth(')° Al) parameters are allowed to
vary independently on each iteration and goometric consistancy is not an

imposed constraint.

Radial distribution curve analysis
The radial distribution curve method of analysis employs the Fourier
sine transform of the reduced molecular intensity to deduce internuclear

distances and amplitudes of vibration. The radial distribution function,

£(r), has been defined as (94)
£(r) = j;. s ll(s)°xp exp(-baz) (sin sr) ds - (39)

where oxp(-bsz) is called the Degard damping factor (95).

As may be seen from EBquation 38, the reduced molecular intensity
M(s) includes effects of planetary electron scattering on. the molecular
intensity in the UiJ(') terms, It is convenient in structural studies to
make some correction for this nom~nuclear scattering before inversion of

the data to facilitate the deduction of internuclear parameters. Plotted
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in Figure 14 are Ui J(s) functions computed for the two.different types
of bonds found in the XoFs molecule. The limit of Ui J(s) as 8 approaches
infinity is unity but the deviation from unity is appreciable at small

values of s,

Several different methods have been proposed to compensate for the
contribution of the electronic environment to the molecular intensity
(91, 94, 96, 97). The approach used in this study was to approximate the

v, J(') functions with Gaussian functions of the form ’
2
Nij(a) 84 + bij exp(-ﬁijs, )

where ‘i.j‘ biJ' and ﬂij are constants., A comparison of Nij(') and

Ui J(') functions is given in Figure 14, A corrected reduced intensity

function Ilu(s) was defined as
(o) - §§:' Cy ¥y 4(8) expl-(12), ;8%/2) [cos om, ) :
x [sin s(rg(l)ij + ﬂ(s)ij)]/s(re)ij (40)
and the Fourier sine transform of this function designated as fN(r) s Where
fu(r) = fo. s IlN(s) exp(-baz) (sin sr) ds,

The procedure employed was to correct M(n)e xp for effects of non~

nuclear scattering by use of a calculated funotion AM(s), where
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Fig. 14. Solid lines indicate Up (a) and Uy, (s) functions for fluorine-fluorine and xenon-
fluorine bonds, respoctively. in the IoF molecule. The dashed curves represent
the corresponding analytical approximat:lons N j(a) to the U J(s) functions,
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a(s) = My(a) = M, (s),

and then to invert the corrected experimental reduced intensity
- + A
Uy (8) pp = Mls) + BM(s)

to obtain fN(r)exp' Experimental data were obtained from smin- 2.6 to

8 ax 39.1, Some compensation for lack of data in the ranges 0 < s < 8 in
and 'max< 8 < » had to be made, therefore, to make possible evaluation of
Equation 39, Thsoretical MN(s) values were used in the region s = 0 to

8 =8 in and an integral termination correction (98) was applied to make

mi
allowance for lack of data from s = 8 ax to 8 = =, Curves were calculated
from

n
EF s Mﬁ(s) exp(-bsz)(ain sr) As

fN(r)exp - 8=0

®max
+ L

- 2
= ns Mﬁ(s)exp exp(-bs°) (sin sr) As f Iyorm

i
where Iterm represents a correction for integral termination (98). The
background intensity function was determined using the oriterion of a
non-negative radial distribution curve. A smooth curve IB(u):waa drewn
through Io(s) and was adjusted to eliminate negative regions in fN(r)exp'
Use of theoretical reduced intensity values in the region s = 0 to

8 =8 and in calculation of AM(s) causes the radial distribution curve

min
to be somewhat dependent on the parameters of a theoretical model. The
principal advantage of IN(s) functions is that the fN(r)oxp curve

generated utilizing these functions is not too sensitive to the input
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parameters. The method of correcting for non-nuclear scattering formerly
used in this research group (88, 91) employed a fconstant coefficient”
reduced intensity function Mc(s) instead of the My (s) function. The

Ms(s) functions are analogous to MN(B) functions and are defined according
to Equation 40 but with the Nij(') taken as unity. Use of the "constant
coefficient” method with XeFG data produced radial distribution curves

~ which were very sensitive to the input parameters. When the MN(') basis
was utilized, however, the sensitivity to input parameters was almost

totally eliminated.

Molecular parameters were obtained from fN(r) curves by means of

exp
& least~squares program due to Boates (99). In this program, the function

2
A = % [ £y(r) - rN(r)exp 3

is minimized by use of the Gauss-Newton method for least squares, The
expressions used to calculate fN(r) are those of Kuchitsu and Bartell (87)
with corfectionn made for failure of the Born approximation (82, 100).

A symmetry is assumed for the moleculs and all internucl@ar distance
parameters'rg are calculated relative to this symmetry. Geometric
consistancy is maintained in each iteration by allowing only independent
parameters to vary and recalculating all dependent parameters each cycle.
Corrections for "shrinkage effects” (101, 102, 103) in the n-on.bonded

distances may also be included.:
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Errors

Uncertainties in strucfural parameters derived from electron
diffraction data may result from either theoretical or experimental
deficiencies.

The theoretical expressions employed assume that the energy of
incident electrons is extremely large compared to molecular energy levels,
that molecular electron densities are the sum of spherical atomic
densities, and that effécts of polarization and multiple scattering are
negligible, Recent calculations of Bonham (61, 64, 68, 104, 105) indicate
that these assumptions provide reasonable approximations, especially for
molecules containing atoms of low atomic number. Eof molecules 6ontaining
atoms or.atomic number thi;ty of higher, deviations due to the failure of
the energy spproximations become important. The present correction for
failure of the Born approximation, for example, is only an approximation,
For bonds with large differences in atomic number, a mean uncertainty of
about 5% in this correction is probable and this error causes relatively
large uncertainties in amplitudes of vibration and in resolution of
~ comporant distances in a composite f(r) peak, as will be discussed later.

Experiental errors may be of three different typess (a) measurement
of scattering angle and determination of electronic wavelength gives rise
to syefematic errors which affect primarily the bond lengths and
secondarily the amplitudes; (b) inaccurate emulsion calibration and
improper extraneous intensity corrections cause systematic errors
affecting the amplitudes of vibration and, possibly, the bond lengths;

(o) random errors in the sector calibration curves and random errors due

to fluctuations in microphotometer readings and emulsion irregularities
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contribute to uncertainties in both interatomic distances and amplitudes
of vibration. These errors do not exhaust all possible sources but are
thought to include the primary contributors in this experiment.
Unoertaintieé in the parameters were estimated during the least-
squares analyses employing the technique of Whittakeriand Robinson (108).
All errors reporfed are uncertainties in independent parameters relative
to th§ assumed symmetry of the molecule. No estimates of error were
caloulated relaxing thg imposed symmetry conditions and the error inherent

in drawing the background function was not included.

Molecular Parameters of XeFe

Data were analysed using prinmarily the radial distribution curve
method, At various times dufing the analysis, models were tested
employing the total intensity curve method to insﬁre that convergence in
r space also implied convergence in s space. More extensive use of the
intensity curve analysis was not feasible because of the lack of geometric
constraints in the available least-squares program,

Plotted in Figures 15, 16, and 17 are the experimental intensity and
background intensity values for data taken at the long. and middle
distances and for date ob'iained with the rz-aector.

Plotted in Figurs 18 is a synthetic fN(r) function calculated for

an XeF_ model with ﬁﬁ rymmetry. For comparison is shown an experimental

6
fN(r)exp curve in which the input parameters for Mﬁ(é) below s . are the
same as the 0h input parameters for the synthetic curve. The discrepancy
between calculated and experimental curves is apparent. The peak at

° .
about 1.9 A in the experimental curve due to the Xe-F distance is clearly
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asymnstric. This asymmetry implies that th§ xe'ﬁorfluorim bonds are not
all of the same length. In addition, the experimental peak due to the
intermediate range fluorine=fluorine distances is shifted to a considerably
shorter mean distance than the iz TxoF value required by 0h symetry. It
is obvious that the xenon hexafluoride molecule is not a regular
ootahedron,

The shape of the Xe~-F peak is determined not only by amplitudes of
vibration and distance splits of the component bonds but also by the Born
phase shift Anxep. The appfoximation usually employed to calculate
values of Ani 3 is based on the Thomas=Fermi model for the atomic potential
(84), This basis is known to provide inaccurate values of the phase

shift n, for interaction with a single atom i but is thought to give

i
reasonably accurate differences in phase Ani’;) for a bond between atoms i
and j. Recent results of Schomaker, et al. (107), however, indicate that

the An, , caloulated from the Thomas=Fermi model may be in error by as

iJ
much as 10% for bonds with large differences in atomic number.

The value of s where Ani’j is equal to '«/2 can be estimated from the
experimental intensity curves, A visual inspection of the intensity
curves indicates t}vmt‘ this "cutoff value”, 'o' is about 17,0 R. 1, whereas
the calculated value (84) is 18,7 X""-. Calculations were performed to
establish an experimental value of 8, because of the dizcrepancy between
calculated and experimental values., When bond lengths,.bond a.n;les, a.ﬁd
emplitudes of vibration were allowed to adjust for a given s o? however,
intensity curve and radial distribution curve analyses both obtained

comparable total standard deviut:l.ons for any value of s . in the range
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i

Om
16,0 < 8, < 17,6 Therefore, a value of 8, = 16,6 A ~ was arbitrarily

asgsumed for all further calculations.

Three slightly different geometric models were found to be effective
in fitting the experimental data. In each case the number of non-
equivalent Xe~F bond len.gtha was limited to two. Three different
amplitudes ¢;f vibration were employed for nonbonded F...F distances but

only two, 1, and 12, were allowed to vary. The third, 13, was taken as

1

1, ¢+ 0,035 for models A and B, and 11 + 0,185 for model C,

1
A drawing of model A is given in Figure 19, The molecule possesses

cz' symmetry and the following restrictions were assumeds

(a) atoms F,, Fgy Fy, Fs, and Xe are coplanar and the associated

Xe~F bond lengths are equal,

(b) the angles €F,XeF,, LF XeF., and &F XoF, are equal,

(c) atoms F Fc, and Xe form a plane perpendicular to the F,F.F, -~

zl
plane and bisecting ¢F1XQF3, and

() Xe=F bonds to F, and F_ are of equal length and are bent [3

2 5
degrees off the axis.
Model B was identical to model A except that the symmetry was
reduced to C' by constraining the Xa-Fs bond to the axis and allowing
the Xe-F, bond to bend fA' degrees ofi' the axis.

Model C was an octahedron with one face opened such that the molecule
maintained 03 v symmetry. A projection of the model on a plane perpen—
dicular to the three=fold symmetry axis is shown in Figure 20. Bonds to

atoms F,, F_, and F_ were longer than the mean Xe~F length and those |

3
shorter. The angle between the symmetry axis and the

1‘0 z’

to F,, F, and Fy
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Fige 19, A drawing representing the distortion from 0h symetry found in
model A
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Fa
Py P,
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Fi

Fige 20, Drawing of model C projected on a plane perpendicular to the
three=fold symmetry axis

and the Xe=F, bond is designated 4 and that between the symmetry axis
and the Xe-F, bond, ¥ . |

Independent parameters, standard errors relative to assumed
symmetries, and internuclear distances for models A, B, and C are given
in Table 9. Shrinkege corrections §r are estimates made from shrinkage
values caloulated for octahedral molecules by Meisingeth and Cyvin (108).
The estimates are rough indeed since the amplitudes of XeF6 vibrations
are quite different from those of the comparison compounds, and the
symeetry is lower,

A modification of model A in which Xe~F bonds to Fi’ Fz, Fs. and Fs
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Table 9. Independent parameters, internuclear distances rg‘. amplitudes
of vibration 1, and bond multiplicities M for models A, B,

and C

distance rs (0) Sr 1 M

Model A . Symmetry sz ot ™ 0.0471
Xe ~ F, 1.831 0,000 0,082 2 Y, p = 1.886 £ 0,005
Xe - F, 1.914 0,000 0,062 4 :
FieaFg 2,506 0,005 0,098 3 Arygp = 0,083 £ 0.015
FpeedFg 2,557 0,002 0,098 4 &F,XeF, = 81.90° £ 0.28°
Fz oe .F3 2.708 00002 00133 4 ﬂ - 5.020 t 0.360
Fl. [ ] .Fs 3.212 0.003 0.133 1
Fz...Fs 3.644 0.003 00052 1
F, e oF 3,787 0.003  0.052 2
1°°*4

- Model B * Symmetry C8 ot ™ 0.,0470
Xe - F, 1,916 0,000 0,059 4
= <
FoeaF, 2,600 0,003 0,005 5 Fxer " 0:090720.018
FpeedFy 2.516 0,002 0.093 2 trlst = 81,60° £ 0.28°
FS’"FG 2.644 0.002 0.093 2 pg - 7.140 : 0.620
FgeedFy 2,644 0,002 0,128 2
FyeedF, 2,730 0,002  0.128 2
FyeeFy 3,232 0,003 0.128 1
FpeedFg 3.640 0.003 0,052 1
FyesoF 3,787 0,003 0,052 2
4 o

Mode.l v Symmetry c:hr Ot ™ 0.0503
Xe - F, 1,912 0.000 0,065 Tp * 1,867 £ 0,005
Xe ~ F, 1.862 0.000  0.085

- L

FyoedFy 2.523 0,002 0,092 bry,p = 0050 £ 0,015

FyeadFy 2,662 0,003  0.082 ¥ =124.61° ¢ 0,24°
FyeeoF, 2,939 0,003  0.,277

F'l...F'4 34765 0,003 0,070

KB LV VW oo v &

§ = 62.66° £ 0,23°
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were longer than the mean length was investigated. The fit of the
radial distribution curve with this model was inferior to that obtained
with model A. The distribution of Xe~F bond lengths in the molecule

was not uniquely determined but, when only two different Xe~F bond
lengths were employed -in models A and B, the best fit of the experimental
data was obtained with all equaiorial bonds longer than the mean
distance. If models A or B are the correct models, it is likely that
three or more nonequivalent bond lengths exist. Evaluation of Qtructural
details of this sort, however, would be beyond the accuracy of the
present experimental data.

Linear combinations of the triply degenerate Flg and F1u vibrational
modes (109) of an octahedral molecule produce distortions from 0h
symmetry similar to the distortions found in models A and C. If F1g
and F1u denote the sum of the three components bf the normal vibrations,
the distortion of model A is closely approximated by the vibration F1g

+ Flu’ and that of model C by F, = F " The possibility was investi-

lg 1

gated that the distortion from Oh symmetry observed in the radial
distribution curve was the result of unusually large amplitu&es of
vibration along some symmetry coordinate about an equilibri;ﬁ Oh
configuration. Radial distribution curves were constructed to represeant
a molecule with Oh symmetry undergoiﬁg large vibrations. The components
of £(r) were taken to be f(r) curves with 0% (Oh symmetry), 33%, 66%,
100% (model C), 133%, and 200% of the distortion from 0 symmétry to
model C. A weighted sum based on the assumption of a Gaussian

distribution of models about an octahedral structure was used to

simulate the f£(r) curve. The weightings used in this sum are shown in
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Figure 21}(&). A least=sfuares computer program was then employed to
deduce the weighting associated with the smallest root-mean-square
deviation between experimental and calculated f(r) curves. The weighting
associated with the best fit is shown in Figure 21 (b). A comparison of
the root-mean-square deviations given in Figure 21 clearly indicates that
the best fit of the experimental data is not with a molecule undergoing

extremely large vibrations about an equilibrium 0h configuration.

Discussion

The mean Xe=F bond length of rg = 1.886 * 0.005 R for the hexafluoride
is consistent with the trend set by XeF,, r = 1,953 £ 0.002 2 (21), and
XeF,, r = 2,00 % 0.01 R (20). The XeF vibrational amplitudes, however,
appear to be larger than those found for the related molecule Ter, where
lTeF = 0,039 X-l (108), and the difference in amplitudes for the two Xe-F
bonds is opposite in sign from what one would predict from a simple
extension of Badger's rule (110, 111, 112).

The error in the correction for failuré of the Born approximation
produces a corresponding error in both lXeF and the split ArXeF of
xenon-fluorine distances. Calculations indicated that the.uncertainty in
8, was 0.8 X-l, and that this uncertainty alone causes an uncertainty of
+0,015 X in lxeF‘ If the errors due to the assumption of only two
different Xe=F bond lengths and to the level of noise in fN(r)exp near the
Xe~F peak are taken into account, the accumulative uncertainty in the mean
of the two Xe~F amplitudes is probably 0,020 3. The error in ArxeF was
not as easy to estimate because its value is determined both by the shape

of the Xe=F peak and by the distribution of nonbonded distances. A
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Fig. 21, Weightings for £(r) curves constructed from models with
different percent distortion from O, symmetry to model C,
(a) Weighting for a Gaussian distribution of models sbout

0, symmetry. (b) Weighting associated with smallest root
msan square deviation from experimental f(r)
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reasonable estimate of the uncertainty in ArXeF is #0,015 X.

The most significant conclusion of this infestigation is that XeF6
does not possess octahedral symmetry. This conclusion is based both on
the shape of the Xe=F peak and on the distribution of F...F nonbonded
distances implied by the radial distribution curve. In any electron
diffraction stﬁdy the number of independent parameters which may be
effsctively solved for is limited by the number of distinct feature;
appearing in the f(r) curve. Because of this limitation and the un-
favorable ratio of atomic numbers in Xer, a unique strudture for the
molecule was not established. If was possible, however, to eliminate
" the possibility that the molecule possessed Oh<symmetry and to deduce
' general characteristics of the structure. An investigation of models A,
B, and C shows that the differences in bond angles are only a matter of
a few degrees and that the nature of the distortion from-Oh symmetry is
much the same in all models. The fluorines on one side of the molecule
are pushed apart and this deformation compresses the fluorines toward
the other side of the molecule,

The structures of Xst and XaF4 were correctly predicted by several
authors employing molecular orbital approaches (28, 30, 113, 114, 115),.
Extension of these approaches to Xer, however, resulted in predictions
of octahedral symmetry. The deficiency of these approaches in the XaF6
case was apparently an inaccurate description of the role of the xenon
58 and 44 orbitals in the bonding scheme, On the basis of energy and
orbital overlap considerations, mixing of Xe(5s) and Xe(4d) orbitals and

the XeF_. molecular orbitals was thought to be very small (30, 115) and a

6
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distortion from O, symmetry was considered to be unlikely. On the other

h
hand, preliminery calculations of Bartell2 indicate that even if simple
molecular orbital theory doés not unambiguously give the equilibrium
structure, it does demonstrate that déformations from 0h symmetry of the
observed form are much less costly energetically than deformations of
arbitrary form,

One theoretical model, the valence=shell electron-pair repulsion
model of Gillespie and Nyholm (27, 116, 117), deserves spgcial note. The
approximate mean Xe~F bond length, a distortion from 0h symmetry, and
the existence of nonequivalent Xe~F bond lengths were predicted from the
postulates of this modgl. The only thing not correctly predicted was the
effective size of the lone pair of electrons, for the observed deviation

from O, symmetry was significantly smaller than the predicted deviation.

h
Gillespie and Nyholm propose that lone pairs of electrons occupy a larger
volume in the valence shell than a bonding pair. In models A and B the
equatorial F~Xe-F bond angles are deformed only about half way from those
of a square array to those of a regular pentagon, although the axial
fluorines are bent away from the lone pair rather than from the equatorial
fluorines. In model C the gap in fhe opened octahedral face is smaller

than a fluorine atom.

Studies have established that ions such as [TeClgzj (118, 119),

)

zBartell, L. S., Department of Chemistry, University of Michigan,
Ann Arbor, Michigan, A molecular orbital study of XeF6 Private
communication, - 1966.
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[TeBrEzl_(lzo), and [SbBrESJ 3 which are isoelectronic with XeF6 possess
Oh symmetry, whereas the present study indicates that XeF6 does note The
simple scheme predicting stereochemistry on the basis of the number of
valence-shell electron pairs is not as successful for coordination number
seven as it is for lower coordination numbers. Perhaps one reason for
this lies in the following point made by Gillespie (121). For lower
coordination the stereochemistry is insensitive to the form assumed for

the interaction potential, but, at coordination seven or higher,bthe

equilibrium geometry depends oritically on the form of the potential,

3La:wton, S. and Jacobson, R., Department of dhemistry. Iowa State
University of Science and Technology, Ames, Iowa, The orystal structure

of (NH4)4szBr12. Private communication. 1965,
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SUMMARY

The theory of x=ray diffr#ction by gas atoms is examined from the
standpoint of one-electron and two-electron operators. Elastic
scattering depends on one-electron operators and, hence, may be used to
determine the density of electrons about nuclei, a one-electron property.
On the other hand, it is found that inelastic scattering by atoms
possessing more than one e}ectron depends on the distribution of distances
between electrons. 'Consequently, the ﬁean density of electrons about |
. other electrons, an important ;Qo-electron property, can also be deter—
mined from diffraction experiments.

Electron-electron and electron=nuclear radial distribution functions
P(rij) and D(ri) are calcu;ated for the ground states of helium-like
systems (2 = 2 to 8) and the ground state of the beryllium atom.
Computations were based on correlated and uncorrelated wavefunctions,
Elastic and inelastic scattering factors for calculating the intensities
IUd) of x rays scattered by these systems were determined from the
distribution functions. Correction functions AP(rlz) and AI(d)
representing the differences between correlated and uncorrelated results
were found to follow a simpie dependency on atomic number for the helium-
like systems., A scheme to predict correlation effects in many electron
atoms was derived from this simple dependency. Correlation shifts in
P(rij) and I(d) for the beryllium atom were computed and compared to
shifts predicted employing the simple scheme, Agreement between
predicted and calculated shifts was good.

" Radial distribution functions P(rij) for neon and argon atoms were

derived from Laurila's experimental x-ray intensities. The resulting
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distribution functions were used to ca}culate experimontal electron—
electron potential energy values, Vij’ The ViJ for neon and argon
calculated from the analytical fits of the experimental data are

1.12 a.u. and 1.40 a.u., respectively. Corresponding values of 1.20 a.u.
and 1.36 a.u. were calculated from self consistent field wavefun&tiona.
The P(rij) functions compared favorably with those calculated from
existing wavefunctions. Uncertainties in the distribution functions due
to the scatter of experimsntal data points and to the vestricted angular
range of the data were large enough to obscure effects of electron
correlation.

Xenon hexafluofidé was studied to determine its molecular gecmetry
and to test various theories on chemical bonding. The results of the
study indicate that the molecule exists as a distorted octahedron with
non-equivalent xzenon-fluorine bond lengths. None of the currently
popular theories on bonding and steriochemistry prédicted the exact
geometry but one, due to Gillispie and Nyholm, did correctly predict

some important structural features.



1,

Se

4.

5.

6.

Te

9.

10,

11,

12,

3.

4,

15.

1s.

7.

i8.

19.

85

LITERATURE CITED
Debye, P., Annalen der Physik 46, 809 (1915).

Waller, I. and Hartree, D. R,, Proceedings of the Royal Society
(London) Al24, 119 (1929).

Barrett, C. S,, Physical Reviewigg, 22 (1928).

Herzog, G., Zeitschrift fuer Physik 69, 207 (1931),

Wollan, B, O., Physical Review 35, 862 (1930).

Herzog, G., Zeitschrift fuer Physik 70, 583 (1931).

Wollan, E, 0., Physical Reviewfgg. 16 (1931).

Compton, A. H,, Physical Review 35, 925 (1930).

Slivnik, Jey Brecic, B., Volavsek, B., Marsel, J., Vrscay, V.,
Smlac, A., Frlec, B. and Zemljic, Z., Croatica Chemica Acta 34,
253 (1962).

Malm, J. G., Sheft, I. and Chernick, C. L., Journal of the American
Chemical Society 85, 110 (1963).

Weaver, E, E,, Weinstook, B, and Knop, C. P,, Journal of the
Americen Chemical Society 85, 111 (1963).

Dudley, F, B., Gard, G. and Cady, G. H., Inorganic Chemistry 2,
228 (1963).

Cleassen, H, H,, Selig, H. and Malm, J. G., Journal of the American
Chemical Society 84, 3693 (1962).

Chernick, C. L., Science 138, 136 (1962),

Weeks, J, L., Chernick, C. L. and Matheson, M, S., Journal of the
American Chemical Society 84, 4612 (1962).

Hoppe, R,, Dahne, W,, Mattauch, H, and Rodder, K. M., Angewandte
Chemie, International Edition in English 1, 599 (1962).

Smith, D, F., Journal of Chemical Physics 38, 270 (1963).

Studier, M. H, and Sloth, E. N., Journal of Physical Chemistry 67,
925 (1963).

Seigel, S, and Gebert, E,, Journal of the American Chemical Society
86, 240 (1963).



20,

21,

22,

23,

24,

25,

26,

’ 270

28,

29,

30,
31,
32,
33,
34,
35,

36,

37.

86

Levy, H. A, and Agron, P, A,, Journal of the American Chemical
Society 85, 241 (1963).

Bohn, R. K., Katada, K., Martinez, J, V. and Bauer, S. H. An
electron=diffraction study of gaseous xenon tetrafluoride. In
Hyman, Herbert H., editor. Noble-gas compounds. p. 238, Chicago,
I1linois, University of Chicago Press, 1963.

Ibers, J. A, and Hamilton, W, C,, Science 139, 106 (1963),

Templeton, D. H.,, Zalhin, A., Forester, J. D, and Williamson, S, M.,
Journal of the American Chemical Society 85, 242 (1963).

Burns, J. H., Agron, P. A, and Levy, H. A., Soience 139, 1209 (1968).

Smith, D, F, Information on bonding in xenon compounds from
infrared spectra. In Hyman, Herbert H.,, editor. Noble=-gas
compounds., pe 295. Chicago, Illinois, University of Chicago
Press. 1963. _

Bohn, Re K., Dissertation Abstruots 25, 3282 (1964).

Gillespie, R, J. The noble-gas fluorides, oxyfluorides, and oxidess
predictions of molecular shapes and bond lenghts. In Hyman, Herbert
H,, editor., Noble-gas compounds. p. 333. Chicago, Illinois,
University of Chicago Press, 1963,

Coulson, C, A,, Journal of the Chemical Society (London) 1964, 1442,

Malm, J, G., Selig, H., Jortner, J, and Rice, S, A.,, Chemical
Reviews 65, 199 (1965),

Urch, D, S., Journal of the Chemical Society (London) 1964, 56775,
Wentzel, G., Zeitschrift fuer Physik 43, 779 (1927).

Klein, 0., Zeitschrift fuer Physik 41, 407 (1927).

Heisenberg, W., Physikalische Zeitschrift 32, 737 (1931).
Bewilogua, L., Physikalische Zeitschrift 32, 740 (1931),
Freeman, A. Jes Acta.Crystallographica';g, 274 (1959).

Thomson, J. J« Conduction of electricity through gases. Cambridge,
England, Cambridge University Press., 1906. '

Pirenne, M, H., The diffraction of x-rays and electrons by free
molecules, Cambridge, England, Cambridge University Press. 1946,



38,

39.
40,
41.

42,

43,

44,

45.

46,

47,

48,

49,

50,

61,

52.

53,

66,

56,

87
James, R. W, The optical principles of the dif'fractioh of x-rays.
London, England, G. Bell and Sons, Limited. 1954. )
Hauptman, H. and Karle, J., Physical Review 77, 491 (1950).
Compton, A. H., Physi§a1 Review 22, 409 (1923).
Herzog, G., Helvetica Physica Acta 2, 169 (1929),

Coulson, C. A, and Neilson, A. H.,, Proceedings of the Physical
Society (London) 78, 831 (1961)

Gilbert, T. L., Reviews of Modern Physios 35, 491 (1963).

Lestex)'. W, A, and Krauss, M., Journal of Chemical Physics 41, 1407
(1964) .

Curl, R. F. and Coulson, C, A,, Proceedings of the Physical Society
(London) 85, 647 (1965).

Rootheen, C. C, J., Sachs, L. M, and Weiss, A, W,, Reviews of
Modern Physics 32, 186 (1960).

Roothaan, C. C, J, and Weiss, A, W., Reviews of Modern Physics 32,
194 (1960).

-

Goodisman, J. and Klemperer, W., Journal of Chemical Physics 38,
721 (1963).,

Karplus, M. and Kolher, H., J., Journal of Chemical Physics 38,
1263 (1963).

Méller, C. and Plesset, M, S., Physical Review 46, 618 (1934).

Colen, M, and Dalgarno, A,, Proceedings of the Physical Society
(London) 77, 748 (1961).

Boys, S. F., Proceedings of the Royal Society (London) A201,
125 (1950).

Freeman, A, J,, Acta Crystallographica 12, 929 (1959).

Freeman, A, J, and Watson, R. E., Acta Crystallographica 15,
682 (1962).

Hylieraas, E. A., Zeitsohrift fuer Physik 54, 347 (1929).

Slater, J. C., Physical Review 36, 57 (1930),



88

57, Tuan, D. F. and Sinanoglu, O., Journal of Chemical Physics 41,
2677 (1964),

58, McKoy, V. and Sinanoglu, O., Journal of Chemical Physics 41, 2689
(1964).

59, Clementi, E,, Journal of Chemical Physics 38, 2248 (1963).
60, Pekeris, C, L., Physical Review 112, 1649 (19568).

61, Iijima, T.,, Bonham, R, A, and Ando, T,, Journal of Physical Chemistry
67, 1472 (1963). .

62, Rutherford, E., Philosophical Magazine 21, 669 (1911),

63, Bartell, L., S, and Gavin, R. M,, Journal of the American Chemical
Society 86, 3493 (1964).

64, Bonham, R. A, and Iijzma, es Journal of Physical Chemistry 67.
2266 (1963). .

65, Compton, A, H, and Allison, S, K, X-rays in theory and experiment.
New York, New York, D, Van Nostrand Co., Inc. 1934,

66, Breit, G., Physical Review 27, 262 (1924),

67 Dirac, P. A, M., Proceedings of the Royal Society (London) Alii,
405 (1926).

68, Bonham, R, A,, Journal of Chemical Physics 43, 1460 (1965).

69, Laurila, E,, Annales Academiae Scientiarum Fennicae, Series A, II,
57, 7 (1941).

70, Chipman, D, R, and Jennings, L, D,, Physical Review 132, 728 (1963).
71, Freeman, A, J., Acta Crystallographica 12, 261 (1959).
72, Berghius, J., Haanappel, I. M., Potters, M,, Loopstra, B, O,,

MacGillavry, C. H. and Veenendaal, A. L., Acta Crystallographica
8, 478 (1955).

73, Freeman, A, J., Acta Crystalliographica 13, 18C (1550).
74, Allen, J, C., Journal of Chemical Physics 34, 1156 (1961).
76, Watson, R, E. and Freeman, A, J,, Physical Review 123, 521 (1961).

76, Tubis, A., Physical Review 102, 1049 (1956).



89

77+ Bartell, L. S. and Brockway, L. O., Fhysical Review 90, 833 (1953).

78. Mott.)N. F.. Proceedings of the Royal Society (London) A127, 668
(1930),

79, Wierl, R., Aunalen der Physik 8, 521 (1931),

80, Debye, P., Journal of Chemical Physics 9, 556 (1941).

81, Bartell, L. S., Journal of Chemical Physios 23, 1219 (1955).

82, Bonham, R, A, and Ukaji, T., Journal of Chemical Physics 36, 72 (1962).
83. Schomaker, V. and Glauber, R., Nature 170, 291 (1952). |

84, Ibers, J. A, and Hoerni, J. A., Acta Crystallographica 7, 405 (1954).°
85, Debye, P,, Physikalische Zeitschrift 40, 404 (1939).

86. Morse, P, M,, Physical Review 34, 57 (1929).

87. Kuchitsu, K, and Bartell, L, S., Journal of Chemical Physics 3§,
1945 (1961). .

88, Bartell, L. S,, Kuchitsu, K, and de Neui, R, J., Journal of Chemical
Physics 35, 1211 (1961).

89, Bartell, L. S, and Brockway, L. O., Review of Scientific Instruments
25, 569 (1954).

90, Bartell, L. S. and Brockway, L. O., Journal of Applied Physics 24,
656 (1956).

91, Bonham, R, A, and Bartell, L, S., Journal of Chemical Physics 31,
702 (1959).

92, Atoji, M., Acta Crystallographica 10, 291 (1956).

93, Bartell, L. S., Kohl, D, A,, Carroll, B. L, and Gavin, R. M.,
Journal of Chemical Physics 42, 3079 (1965).

94, Karle, I, J, and Karle, J., Journal of Chemical Physics 17, 1052
(1949) .

95, Degard, C., Bulletin de la Societe Royale des Sciences de Liege' S,
383 (1937).

96, Viervoll, H., Aota Chemica Scandinavica 1, 120 (1947).



97.

98,

99,

100.

101,

102,
103.

104.
105.

106.

107.

108,
109.

110,
i11.

112,

113.

diffraction study of WFS, OsF

Unpublished mimeographed paper. Seattle, Washington, Department of
Chemistry, University of Washington. 1966,

90

Bartell, L, S., Brockway, L. O, and Schwendeman, R., Journal of
Chemical Physics 23, 1854 (1956).

Bartell, L, S, and Brockway, L, 0., Journal of Chemical Physics 32,
512 (1960),

Boates, T, L., Application of geometric constraints in electron-
diffraction studies. Unpublished mimeographed paper. Ann Arbor,
Michigan, Department of Chemistry, University of Michigan. 1965,

Kimnr;, M, and Iijima, T., Journal of Chemical Physics 43, 2157 .
1965

Bastiansen, O, and Traetteberg, M., Acta Cryntallographica 13, 1108
(1960).

Morino, Y., Acta Crystallographica 13, 1107 (1960),

Morino, Y., Cyv;n, S. J., Kuchitsu, K. and Iijima, T,, Journal of
Chemical Physics 36, 1109 (1962),

Bonham, R. A,, Journal of Chemical Physiocs 43, 1933 (1965).
Bonham, R, A,, Journal of Chemical Physics 43, 1103 (1965).

Whittaker, E, T, and Robinson; G, Caloculus of observations. 4th
ed, New York, New York, D. Van Nostrand Co., Inc. 1952,

Schomaker, V., Weinstock, B., Kimura, M. and Smith, D, An electron~

Meisingeth, E., and Cyvin, S. J., Acta Chemica Scandinavica 17,
1805 (1963),

Herzberg, G, Molecular spectra and molecular structure. Volume 2,
Princeton, New Jersey, D. Van Nostrand Co., Inc. 1945,

Badger, R, M., Journal of Chemical Physics 2, 128 (1934).
Badger, R. M., Journal of Chemical Physics 3, 710 (1935).

Bartell, L. S, and Carroll, B. L., Journal of Chemical Physics 42,
1135 (1965).

Rundle, R, E,, Journal of the American Chemical Society 85, 112
(1963). .



114.

115.

116,

117.

118,

119,
120.

121.

91

Pitzer, K. 8., Science 139, 414 (1963).

Lohr, L. L. and Lipscomb, W, N. An LCAO~MO study of rare—gas
fluorides. In Hyman, Herbert H., editor. Noble-gas compounds.
p. 347. Chicago, Illinois, University of Chicago Press, 1963.

Gillespie, R. J. and Nyholm, R. S., Quarterly Reviews (London)
11, 339 (1957).

Gillespie, R. J., Journal of Chemical Education 40, 295 (1963) .

Aynsley, B, E, and Hazell, A, C., Chemistry and Industry (London)
1963, 611. .

Engel, G., Zeitschrift fuer Kristallographie 90, 341 (1935).
Brown, .I. D., Canadian Journal of Chemistry 42, 2758 (1964).

Gillespie, R. J., Canadian Journal of Chemistry 38, 818 (1960) .



92

ACKNOWLEDGEMENTS

I would like to thank Dr. L. S. Bartell for suggesting the problems
discussed in thi; dissertation and for his guidance throughout my studies.

My thanks to Dr. H. B. Thompson for his willingness to discuss
research p;oblems and for his helpful advice. I am indebted to Dr. C. L.
Chernick for providing the sample of Xer and the auxiliary equipment,
and for his invaluable assistancs with handling the compound.

I wish to thank Mr. Thomas Boates for providing the computer program
for the radial distribution curve analysis and for hisbadvice over the
past four years. I would.also like to acknowledge the assistance of
Mr. Jay Janzen, Mr. Nick Magnani, and Mr. Stan Caldwell on various stages
of this research.

I am indebted to the National Science Foundation for financial
support for the academic years 1962-63 and 196565, and to the Atomic
Energy Commision for support for the years 1963-64 and 1964-65.

Special thanks to my wife for her help with the preparation of this
dissertation and for her understanding and encouragement during the course

of these studies.



	1966
	Effects of electron correlation in X-ray diffraction and an electron diffraction study of XeF6
	Robert Michael Gavin Jr.
	Recommended Citation


	tmp.1411601292.pdf.ee438

